Nitrogen Gas Adsorption in Zeolites 13X and 5A

نویسندگان

  • H. Melissa Magee
  • N. S. Sullivan
چکیده

Since the discovery of zeolites there has been a consistent interest in the potential applications of these microporous structures. Of current particular interest is the possible use of zeolites as storage devices for fuel cells in the hydrogen economy. The adsorption kinetics of zeolites are not fully understood, and therefore the potential of such materials has not been optimized. In this study, the nitrogen adsorption isotherms for zeolite 13X in its commercial, pellet form and then as a crushed sample were obtained at 95K and 77K. This study compares the two isotherms obtained from zeolite 13X in its pellet form with those obtained after the zeolite was crushed. Once obtained, the isotherms showed that it is beneficial the for adsorption volume to crush the zeolite. The experiment also revealed that more adsorbate (in this case nitrogen gas) is adsorbed at lower temperatures. The same procedures were performed on a crushed sample of zeolite 5A. This report includes the adsorption isotherms for Zeolite 5A at 95K and at 77K. It was found that zeolite 5A reaches its saturation point more rapidly at higher temperatures. Also included is a section focused on informing the reader of some possible sources of error in this study, and of some techniques that were found to be useful in zeolite experimentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Water Content on SO2/N2 Binary Adsorption Capacities of 13X and 5A Molecular Sieve, Experiment, Simulation, and Modeling

In this work, SO2 adsorption on 13X and 5A was explored at different concentrations, and the results were compared to molecular simulation and models. The adsorbent saturation tests were performed at four different concentrations of 250, 500, 750, and 1000 ppm, and it was observed that saturation would take more time for higher SO2 concentrations. Grand Canonical Monte Carlo method was used for...

متن کامل

Nitrogen Adsorption on Molecular Sieve Zeolites: An Experimental and Modeling Study

Separation of nitrogen from a gaseous mixture is required for many industrial processes. In this study, the adsorption of nitrogen on zeolite 4A was investigated in terms of different adsorption isotherm models and kinetics. An increase in the initial pressure from 1 to 9 bar increases the amount of adsorbed nitrogen from 6.730 to 376.030 mg/(g adsorbent). The amount of adsorbed nitrogen increa...

متن کامل

Experimental, Kinetics and Isotherm Modeling of Carbon Dioxide Adsorption with 13X Zeolite in a fixed bed column

In this work, zeolite 13X with porosity structure has been used as an adsorbent for adsorption of CO2 flue gas. The effect of operating conditions including pressure and time on adsorption capacity were investigated. The experiments conditions are constant temperature, the range of pressure 1 - 9 bar and the registration of adsorption capacity with passing of time. Experimental data were adjust...

متن کامل

Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X.

The presence of H2O in postcombustion gas streams is an important technical issue for deploying CO2-selective adsorbents. Because of its permanent dipole, H2O can interact strongly with materials where the selectivity for CO2 is a consequence of its quadrupole interacting with charges in the material. We performed molecular simulations to model the adsorption of pure H2O and CO2 as well as H2O/...

متن کامل

Dynamic Modeling of Nitrogen Adsorption on Zeolite 13X Bed

Oxygen is one of the most important products in chemical industries. This chemical element is used in various processes such as: refinery industries, manufacturing metal and other industrial operations. For instance, oxygen with high purity is utilized in different chemical processes like: steel construction, paper industries, wastewater treatment and glass production. In 1907, oxygen was produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008